
Introduction to BOUT++

Ben Dudson
benjamin.dudson@york.ac.uk

Department of Physics, University of York, Heslington, York YO10 5DD, UK

LLNL, 14th September 2011

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (1 of 13)



The BOUT++ code

Plasma fluid simulation framework1

Solves an arbitrary number of fluid equations in curvilinear
coordinates

Finite difference with implicit or explicit timestepping.
Methods can be changed at run-time, and include 4th-order
Central differencing, Arakawa, and 3rd-order WENO.

Written in C++, open source (LGPL)2

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

Turbulence in LAPD

Number of processors
10 100 1, 000 10, 000

E
ffi

ci
en

cy
(%

)

0

25

50

75

100

125 Parallel scaling

1B.D.Dudson et. al. Comp. Phys. Comm. 180 (2009), pp. 1467-1480
2Available at http://github.com/bendudson/BOUT

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (2 of 13)



What is BOUT++

Framework for writing fluid / plasma simulations in curvilinear
geometry

Finite-difference code, variety of numerical methods and
time-integration solvers

Written from scratch in C++, borrowing some ideas from the
original BOUT code

Intended to be quite modular, enabling fast testing of
numerical methods

Can evolve any number of equations, with equations
appearing in a readable form

Primarily designed and tested with reduced plasma fluid
models in mind

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (3 of 13)



What isn’t BOUT++

Not a general parallel simulation library. Better tools such as
PETSc exist for that

Not a magic bullet. It doesn’t automate the process of
choosing an appropriate numerical scheme, just makes it
easier to implement and test different ones

Not suitable for every problem. The numerical methods
currently implemented are quite general, but cannot cover all
problems

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (4 of 13)



Overall aims

Started with the aim of simulating ELMs. Appropriate physics
model not known. Wanted to make the code easy to change

Large codes often hard to understand, so wanted to isolate
the model-specific code into a small number of lines

Still hard to understand whole code, but clearer what problem
is being solved

Now becoming more widely used, and aim is to build a community
to use and develop the code further
Separated into model-specific and general code, so we can

Work on multiple different physics problems separately

Benefit from each other’s improvements to the core code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (5 of 13)



Overall aims

Started with the aim of simulating ELMs. Appropriate physics
model not known. Wanted to make the code easy to change

Large codes often hard to understand, so wanted to isolate
the model-specific code into a small number of lines

Still hard to understand whole code, but clearer what problem
is being solved

Now becoming more widely used, and aim is to build a community
to use and develop the code further
Separated into model-specific and general code, so we can

Work on multiple different physics problems separately

Benefit from each other’s improvements to the core code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (5 of 13)



Status and capabilities

Equations appear in a form which is (reasonably) clear e.g.

ddt(Apar) = - Grad_par(phi);

Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

Promising results for turbulence and ELM simulations. Xu will
talk more about this next...

For typical ELM simulations the code scales well to a few
thousand cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

Equations appear in a form which is (reasonably) clear e.g.

ddt(Apar) = - Grad_par(phi);

Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

Promising results for turbulence and ELM simulations. Xu will
talk more about this next...

For typical ELM simulations the code scales well to a few
thousand cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

Equations appear in a form which is (reasonably) clear e.g.

ddt(Apar) = - Grad_par(phi);

Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

Promising results for turbulence and ELM simulations. Xu will
talk more about this next...

For typical ELM simulations the code scales well to a few
thousand cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

Equations appear in a form which is (reasonably) clear e.g.

ddt(Apar) = - Grad_par(phi);

Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

Promising results for turbulence and ELM simulations. Xu will
talk more about this next...

For typical ELM simulations the code scales well to a few
thousand cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Work in progress

Coupling to the PETSc library for time-stepping working and
under development

Gyro-fluid extensions (gyro-averaging operators) working and
being tested

Pre-processing routines to prepare equilibria functional, but
needs improvement

Test cases: many example problems, and some unit tests.
More needed to allow regular regression testing

Documentation. Quite extensive manuals, but lags behind
code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (8 of 13)



Future developments

Preconditioning methods, including physics-based

More advanced numerical methods, both differencing and
time-integration

Improved handling of highly non-uniform meshes

Additional differential operators to model effects like Landau
damping

Coupling to external databases or codes to model things like
atomic physics, fuelling and interactions with core and walls

Better visualisation tools, in languages other than IDL

Use of external libraries (e.g. PETSc, hypre) for linear and
nonlinear solvers

Scalability beyond 10,000 cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (9 of 13)



Access to BOUT++

The BOUT++ code is open source, and publically available at
github.com

http://github.com/bendudson/BOUT

For this workshop, we have created a “stable” version 1.0, which
may be updated with bugfixes, but no new features

http://github.com/bendudson/BOUT-1.0

Anyone can download a copy, but to make changes you will need
to set up an account and SSH keys on github. Sean Farley will
cover this after coffee...

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (10 of 13)



Why use Git?

Git was written by Linus Torvalds with Linux development in
mind, so can easily handle very large collaborations and
complicated merging

Doesn’t enforce any particular way of working, and doesn’t
have the concept of a “central” server - all copies of the code
are equivalent

A particular copy of BOUT++ is only “the” version by
consent (or diktat)

This can seem strange coming from SVN, but makes it easier to
work independently on features, then merge changes together
afterwards.
⇒ Hopefully a help, rather than a hinderance to collaboration

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (11 of 13)



Use of BOUT++

Contributing:

BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

You’re free to take and modify BOUT++ for any purpose

We would appreciate it if you contributed back improvements
you make to the code

Support:

We’re happy to help, but our time is limited

One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help
support each other

There is a BOUT++ development mailing list. Please let me
know if you’d like to join it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (12 of 13)



Use of BOUT++

Contributing:

BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

You’re free to take and modify BOUT++ for any purpose

We would appreciate it if you contributed back improvements
you make to the code

Support:

We’re happy to help, but our time is limited

One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help
support each other

There is a BOUT++ development mailing list. Please let me
know if you’d like to join it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (12 of 13)



Summary

BOUT++ is a fluid simulation framework designed with
plasma edge simulations in mind

Less general than libraries like PETSc, still very flexible for
plasma applications

A tool to speed up development of new plasma models and
numerical methods

Not perfect...
I look forward to working with you to improve it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (13 of 13)



Summary

BOUT++ is a fluid simulation framework designed with
plasma edge simulations in mind

Less general than libraries like PETSc, still very flexible for
plasma applications

A tool to speed up development of new plasma models and
numerical methods

Not perfect...
I look forward to working with you to improve it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (13 of 13)


